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SUMMARY

Current fire protection for spacecraft relies mainly on fire prevention through the use of

nonflammable materials and strict storage controls of other materials. The Shuttle also has

smoke detectors and fire extinguishers, using technology similar to aircraft practices. While

experience has shown that the current fire protection is adequate, future improvements in fire-

safety technology to meet the challenges of long-duration space missions, such as the Space

Station Freedom, are essential. The designs of Freedom include photoelectric smoke detectors,

multi-band flame detectors, and carbon dioxide extinguishers. All spacecraft fire-protection

systems, however, must deal with the unusual combustion characteristics and operational prob-

lems in the low-gravity environment. The paper discusses the features of low-gravity combus-

tion that affect spacecraft fire safety, and the issues in fire protection for Freedom that must be

addressed eventually to provide effective and conservative fire-protection systems.

INTRODUCTION

This paper is a review of low-gravity combustion knowledge and its application to fire

protection in human-crew spacecraft. The techniques for spacecraft fire safety originated from

those of aircraft, but spacecraft protection must respond to the unusual aspects of fires in the

space environment (refs. 1 and 2). An orbiting spacecraft experiences a balance of forces that

reduces the net gravitational attraction to near-zero, greatly reducing buoyant flows and pro-
foundly influencing the characteristics of fires. Many problems are yet to be defined, let alone

solved, in the application of low-gravity combustion science toward practical techniques in fire

safety (ref. 3).

Fires can occur in space. There have been three minor incidents, involving electrical

shorts and component overheating, in Shuttle missions to date. These occurrences caused only

trivial damage to the materials involved, but the incidents were examples of possible fire scen-

arios that could have harmful consequences if not properly anticipated and promptly treated

(ref. 4).

The current U.S. space transportation system, the Shuttle, is a closed environment

susceptible to the risk of fire damage and injury. Shuttle fire-safety procedures incorporate

provisions for prevention, detection, and suppression. Since the missions of the Shuttle are rela-

tively short, the vehicle can return to Earth promptly for clean-up and repair after a fire. In the



future, however, missions will be extended. The major thrust will be in the development of the

Space Station Freedom, a permanently orbiting habitat, laboratory, and workshop. Freedom

will be a complex structure, designed for a variety of housekeeping, scientific, and commercial

enterprises that may increase the probability of fire incidents. Fire and post-fire protection must

depend on provisions carried onboard Freedom, since external rescue opportunities can be many
days away.

This paper is based on a previous review of spacecraft risk analyses prepared by the
authors (ref. 5). The scope of the paper covers a discussion of spacecraft fire-safety strategies,

some features of low-gravity fires that influence safety, current approaches and proposed designs
for U.S. spacecraft, problems in fire protection, and suggested research to address these
problems.

SPACECRAFT FIRE-SAFETY RISKS AND STRATEGIES

The confined quarters, limited fire-fighting resources, lack of external rescue capability,

and the poorly understood effects of the microgravity environment in spacecraft make the conse-

quences of fire incidents very dangerous. Nevertheless, experience has shown that the Shuttle

fire protection is effective in responding to and limiting fire incidents. For the fire protection of

the future Space Station Freedom, however, there are strong incentives to improve procedures
and institute quantitative risk assessments. Practices acceptable for the short missions of the
Shuttle may not be adequate for the Space Station Freedom, because of increased fire risks in

the scientific, workshop, and daily living (cooking, laundry, trash disposal, for example) opera-

tions. For Freedom, there will be limited rescue options, and fire protection, controls, and

repairs must be performed in orbit using supplies on hand. Because of the long-duration mission

assignments, there is also the possibility of relaxation of crew discipline and alertness to danger.

Early in the definition phase of the Freedom program, Rockwell International investiga-

tors evaluated a number of safety concepts (refs. 6 and 7). The elements of the U.S. space
program fire-safety strategy, as derived by the authors (ref. 5) from this early assessment, is

illustrated in figure 1. The strategy is, in effect, a tradeoff of minimum risk levels against

practical fire protection. The desired, lowest-risk element is fire prevention through exclusion

(or minimization) of fire-causing factors, primarily by the removal or reduction of potential

flammable materials. Since the success of this approach cannot be guaranteed, the strategy

must recognize the finite probability of the initiation of a fire (or overheating or smoldering).
The hlgher-risk response to the incipient fire is through detection. If detection is timely, the

incipient fire may be alleviated by a minimal response (turning off power, for example). If
necessary, timely detection will need to be supplemented by the higher-risk element of extin-

guishment. Finally, an important concern in spacecraft fire safety is on-board recovery, the
operations of environmental alleviation and post-fire repairs. A delay or failure of detection or

extinguishment leads to unacceptable risks. The U.S. space program safety philosophy defines
_unacceptable" risks as those exceeding the worst-case option of a fire that will cause no crew

injuries but possible component damages suspending some operations temporarily (ref. 6).

As the designs of Freedom evolved, specific risk models have been proposed. Kaplan

(ref. 8) developed qualitative fault trees to define the alternative paths from initiating fire events
that threaten the unacceptable aftermaths of heat, toxic gases, and structural failure to the

acceptable results of safe conditions, crew rescue, or crew endangerment, stated in the order of

increasing risk. Another quantitative risk-assessment proposal of Apostolakis (ref. 9) requires
three evaluations:



(1) The identification of fire scenarios and critical locations,

(2) The estimation of fire growth times, and

(3) The estimation of response times (fire detection and suppression, for example).

All of these risk analyses recognize the strong influence of the low-gravity space environ-

ment on fire characteristics. None of them can offer, however, specific strategies designed to

address the unique hazards of fires in space; nor can they anticipate the new safety challenges

arising in the evolving designs and assembly procedures for Freedom.

MICROGRAVITY COMBUSTION SCIENCE

The Space Environment

Typical fires have large density gradients created by the rapid heat release in flames

(temperature increases can approach 1000 K/mm, for example). Under the influence of gravity,

these density gradients cause substantial natural convection or buoyancy-driven upward flows.

The placement of fire detectors on ceilings, for example, anticipates the predictable upward bulk

motion of combustion products in normal gravity. Orbiting space vehicles, however, are in a

state of near-equilibrium between centrifugal and gravitational forces. Thus small, unattached

objects within the spacecraft experience near-zero accelerations, ranging from about 10 "7 to

about 10 -4 times normal Earth gravity levels (1 g, or 9.8 m/s2). In this _microgravity" envir-

onment, even very large temperature gradients result in greatly reduced buoyancy forces,

although buoyant motion may not be entirely negligible. Under these circumstances, other flow-

field components may emerge to influence flame spreading and flammability, including low-level
forced flows such as cabin-air ventilation.

Microgravity Combustion Research

Originally, microgravity combustion research focused upon tests of classical combustion

problems formulated theoretically but omitting the gravitational effects of buoyant fluid motion.

Current research in microgravity combustion is more comprehensive, and it seeks analytical and

experimental solutions to three overlapping sets of problems. These are:

(1) The basic understanding of combustion processes simplified by the absence (or near

absence) of buoyant convection,

(2) The improved understanding of certain physical mechanisms in flames_ for example,

mass diffusion, radiation heat transfer, or surface-tension driven convection, ordinarily over-

whelmed by buoyant convection processes, and

(3) The practical determination of the limitations of flammability, flame stabilization,

and flame spreading in the low-gravity environment (ref. 10).

Microgravity combustion research spans an interesting variety of flame types. Studies of

stabilized and freely propagating laminar flames in premixed gases contribute important infor-

mation on flammability limits (ref. ll). Other studies on jet diffusion flames (ref. 12), flames

spreading over liquid pools (ref. 13), and flames on thin solid fuels (ref. 14) contribute to the

knowledge of flame spreading, soot formation, and radiant emissions in these practical fire

environments. The microgravity environment is also utilized to isolate and stabilize single fuel

droplets and particle suspensions for basic combustion studies in these important two-phase

systems (ref. 10).



Experimental efforts in microgravity combustion have been active since appropriate

testing facilities became available in the 1960's. Orbiting spacecraft would provide the ideal

laboratory or demonstration facility for these experiments. Until recently, however, there was

only one combustion-related study in space, a set of experiments conducted in the 1974 Skylab

orbiting laboratory (ref. 15). In October 1990, however, a new Shuttle experiment program on

paper-fuel flammability in low gravity (the Solid Surface Combustion Experiment, ref. 16) was
initiated. To date, three tests under differing atmospheric pressures have been conducted, each

in separate Shuttle missions. Data and analyses from these tests will be available soon.

Thus, almost all reduced-gravity combustion research has been conducted in two types of

ground-based free-fall facilities that offer low-gravity conditions for limited time periods
(ref. 17). These facilities are drop towers, which can provide 2 to 5 sec of _-,10"6 g (fig. 2), and

aircraft flying parabolic trajectories, which can provide about 20 sec of _10 "2 g (fig. 3). The

ability to perform useful low-gravity research in these ground-based facilities has proved to be

extremely valuable to the understanding of low-gravity fire science. Results of ground-based

tests, for example, are essential in establishing the combustion models for the interpretations of

the data from the on-going Shuttle Solid Surface Combustion Experiment (ref. 18).

SPACECRAFT DESIGNS FOR FIRE SAFETY

Fire Prevention

In human-crew spacecraft, oxygen must be present in the atmosphere for life support.

While good design and housekeeping practices minimize ignition sources through electrical-circuit

protection and grounding, for example, ignition sources are always assumed to be present.

Therefore, with reference to the familiar fire "triangle" of fuel, ignition, and oxygen, the focus of

spacecraft fire prevention is on the exclusion, or, in practice the reduction, of potential fuels.

Current practices in material controls.-- Materials used in habitable volumes of space-

craft must be evaluated to meet prescribed criteria of flammability. NASA specifications (ref.

19) require the flammability tests, NHB 8060.1C Upward Flame Propagation (Test 1) for
materials in the form of sheets, foams, and coatings, and NHB 8060.1C Electrical Wire Insula-

tion Flammability (Test 4) for insulation materials for electrical wiring. The tests are conducted

in an apparatus (shown in fig. 4 for Test 1) contained within a sealed chamber under a worst-

case flammable atmosphere (air enriched to 30 vol % O2 for most Shuttle applications) and with
upward flame propagation to aid flame spread by the direction of buoyancy. After exposure to a

promoted ignition source for 25 s, a material is considered self-extinguishing if it either fails to

propagate a flame away from the igniter or burns for a distance less than 15 cm, without any

transfer of burning debris to ignite the paper sheet mounted below the specimen (fig. 4).

There are several supplemental spacecraft flammability tests. NHB 8060.1C Heat and

Visible Smoke Release Rates (Test 2) is an application of the ASTM E 1354-90 Test Method for

Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consump-

tion Calorimeter. Test 2 is required to evaluate materials with exposed surface areas greater
than 0.37 m s, and it may be used for supplementary data on the flammability of materials that

fail to meet the requirements of Test 1. For volatile liquids, NHB 8060.1C Flash Point of

Liquids (Test 3) is equivalent to the ASTM D 93-85 Test Methods for Flash Point by the

Pensky-Martens Closed Tester. NHB 8060.1C Flammability Test for Materials in Vented or
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SealedContainers(Test8) assessesthe storage-configurationflammabilityof materialsthat fail
Test1 but areto beisolatedin sealedor ventedcontainers.

In the past20years,NASAmaterialorganizationshavecompileda databaseof nearly
8000materialstestedin air or enriched-oxygenatmospheres.It is recognizedthat manyessen-
tial materialsdonot "pass"thesetests;their acceptabilityis verifiedin their locationsor end-
useconfigurationsby waiver,analysis,or additionaltesting(ref. 20). Prior to eachShuttle
mission,theon-boardlocationsof materialsanditemsaremapped,andpossiblefire-propagation
pathsareevaluatedfor control. Photographsof the spacecraftinterior aremadefor reference.

Atmospheric controls.--For life support, the first U.S. human-crew missions (Mercury,

Gemini, Apollo) had 100 percent-O 2 atmospheres and a reduced pressure of 34.5 kPa to keep the
pressure differential across the lightweight spacecraft structure low (ref. 21). The present

Shuttle orbiter structure permits a sea-level-equivalent pressure of 101.3 kPa, with a composition

of 21 vol % 0 2 in nitrogen (air). The Shuttle space suit used for extravehicular activities
(EVA), however, has a breathing atmosphere of 100 percent 0 2 at 30 kPa pressure to permit
flexible glove operation. To avoid decompression sickness from the sudden decrease in atmo-

spheric pressure, the crew members must be conditioned to remove nitrogen from their blood

stream prior to the EVA. This is accomplished by prebreathing 100 percent O 2 for 4 hr.
Alternatively, the cabin total pressure may be reduced to 70 kPa by removal of part of the

atmospheric nitrogen for at least 12 hr. (This raises the oxygen concentration to 30 percent.)

Only 40 min of crew oxygen prebreathing prior to an EVA is required with the reduced-pressure

Shuttle atmosphere.

It is interesting to note that some atmospheres that support human life may not support

fire spread (ref. 22). For example, a breathable atmosphere with a near-sea-level quantity of

oxygen (a partial pressure of 21 kPa) but a low percentage of oxygen inhibits fire growth

because of the cooling or quenching effects of the excess atmospheric diluent. In submarines, this

principle is the basis for fire control by nitrogen flooding to dilute the oxygen concentration in

the existing air atmosphere (ref. 23). Unfortunately, since nitrogen flooding substantially
increases the atmospheric pressure, the method is unsuitable for use in a limited-strength space-
craft structure.

Humans can also tolerate long-duration exposures to atmospheres with oxygen partial

pressures of 80 percent or less of the sea-level equivalent, corresponding to high-altitude

conditions (ref. 24). These reduced-oxygen atmospheres, which inhibit fire spread, may also

have medical advantages in improving the acclimatization of humans to low gravity and stress
conditions (ref. 25). On the other hand, these altered atmospheres could have detrimental

effects on human efficiency and performance under the long-term, rigorous conditions of space

station missions. In any event, the adoption of a low-oxygen atmosphere for the first generation

of Freedom is unlikely, because, among other reasons, it may compromise or confuse life-science

and materials experiments that require "air" atmospheres for reference conditions. Moreover,

lower-oxygen atmospheres may not be completely fire-free, since some potential space hazards

such as smoldering may yet occur under these conditions.

Problems in spacecraft fire prevention.--There are at least three deficiencies in the

present fire-prevention practices for spacecraft that must be recognized and eventually addressed.

These shortcomings are in the nonconformity of the present acceptance tests to research and

industry standards, the necessity to accept obviously flammable materials on spacecraft, and the



absenceof low-gravity correlations to predict material performance under actual space
conditions.

The NASA NHB 8060.1C Upward Flame Propagation (Test 1) is a screening test,

designed to evaluate materials under worst-case atmospheres, usage thicknesses, and flame-
propagation conditions. Flammability assessments of the NHB 8060.1C test cannot be correla-

ted with industry and aircraft standards for peak and total heat release (ref. 26). While there

may be no particular advantage in having common flammability criteria among space, aircraft,

and other transportation sectors, heat-release and flame-spread-rate standards may be applied to
the prediction of flammability based on material properties. The cited study of Ohlemiller and

Villa (ref. 26) also noted that preheating the samples prior to ignition in the NASA test may be
more representative of potential in-space ignition scenarios.

Articles carried on spacecraft include a number of materials and components, with no

effective substitutes, that could not qualify as nonflammable by any criterion. These items

include paper, film, cotton clothing and toweling, some foam padding, VelcroO patches, and

many commercial instruments and components. The Shuttle control system, already noted,

inventories these articles, identifies the hazards, and prescribes the proper storage or protection.

For the long-term missions of Freedom, however, more flammable materials may be present,
protective configurations may change with time, exposure to ignition sources may increase, and

attention to proper handling of flammable materials may decay with overconfidence.

Finally, as additional low-gravity data are generated, the application of normal-gravity

tests and standards to predict low-gravity flammability should be re-evaluated. As a practical

matter, the testing of spacecraft fire-safety technology, including fire detection and intervention

equipment as well as material-flammability screening, must be performed on Earth where, in

contrast to the use environment, buoyant motion dominates. For many years, normal-gravity

flammability assessments were accepted as representative of worst-case situations; that is,

materials could be considered more flammable on Earth than in space. This assurance is based

on the results of the in-space experiment on Skylab in 1974 (ref. 15), where Kimzey demonstra-
ted that, in all cases, the flame-spread rate of materials was less in low gravity than in normal

gravity. Similar experiments in free-fall drop towers on liquid pool fires (ref. 13) and on fires
spreading along thin paper fuels (ref. 27) came to the same conclusion, provided that the meas-

urements are made in a quiescent atmosphere. Comparisons of relative flammability at low and

normal gravity must recognize that test conditions are not directly comparable except at very
high forced-flow rates. While it is possible to have a truly quiescent microgravity surface-

burning experiment, this is not the case in normal gravity, owing to the buoyant convection

caused by the flame. In fact, an important finding of the microgravity flame studies is that the

addition of small forced flows (typical of spacecraft ventilation) broadens low-gravlty flamma-
bility limits and increases flame-spread rates. These conclusions are based on studies with forced

flow opposed to the flame spread, analogous to the downward burning case in normal gravity

(refs. 14 and 27). Initial results of the opposite, wind-aided or upward burning, flow case have

been reported (ref. 28), but comparative data on low- to normal-gravity flammability limits and
flame-spread rates are not yet available.

Recently, T'ien (ref. 29) has reported the results of analyses of flammability limits of

plausible, hypothetical materials as functions of atmospheric oxygen fractions. Because of the

crossing of tile flammability boundaries, the model showed it is possible that the comparative

flammability ranking of two materials in low gravity could be the reverse of their ranking in nor-
mal gravity.
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There are other unusual combustion-related phenomena in microgravity that may

influence the assessment of material flammability. For example, the NHB 8060.1C Test 1 will

reject materials that drip hot particles to ignite a paper sheet below the test specimen. Small-

scale experiments have shown, however, that in low gravity there is a radial expulsion of hot

particles from some common materials with no preferred "drip" direction (ref. 30). Other

phenomena of concern include the persistence of flammable aerosols or particle clouds in low

gravity (ref. 1) and the greater likelihood of smoldering combustion that is difficult to recognize

and control (ref. 31).

Fire Detection

Current practices.--Fire-safety strategies must always assume the probability of a

breakdown in fire prevention, and thus provisions for early-warning fire detection in spacecraft

are essential. In the early U.S. spacecraft, the senses of the crew functioned as fire detectors. As

missions became too complex to rely solely on human observations, automated fire detectors

were installed in the spacecraft, starting with the Apollo project. The range of sensors inves-

tigated for space applications included ultraviolet flame detectors, chemical-specie detectors,

condensation-nuclei smoke detectors, and quartz-crystal microbalance smoke detectors (ref. 5).

At present, the pressurized Shuttle Orbiter cabin space is monitored by nine ionization

smoke detectors. If the payload bay is used for a human-crew laboratory (Spacelab or Micro-

gravity Lab), it also has smoke detectors. The Shuttle detector is identical in concept to

ionization smoke detectors in common usage in buildings and aircraft. It has two ionization

chambers, a sensing and a reference chamber, to reduce its sensitivity to changes in pressure or

humidity. An integral fan creates an internal flow at the angled entrance tube to the chambers,

bypassing high-momentum particles (probably those nominally greater than 5 _m in size), likely

to be dust rather than smoke. The fan flow also guarantees adequate sampling in the absence of

natural-convection flow in low gravity. Internal logic circuits require the buildup of particles for

a predetermined time prior to actuation, to reduce false alarms. Alarm levels are set for a parti-

cle density of 2 mg/m3sustained for 5 s or for a rate of rise of 22 #g/(m3)(s) for 20 s. Thomas

(ref. 32) estimated that the smoke density at the set point is a factor of five lower than that of a

visible smoke column (in normal gravity). In the three Shuttle incidents of component overheat-

ing and short circuits, the crew observed the smoke emissions and took action to deenergize the

affected circuits before the smoke alarm actuation levels were exceeded.

Future trends.--The Space Station Freedom will be an assembly of occupied cylindrical

chambers, called modules, interconnected by smaller nodes (fig. 5). Within each module, and on

a smaller scale within each node, there are four longitudinal banks of equipment racks enclosing

the central core, or working corridor. Fire-detection proposals for Freedom call for smoke detec-

tors as the primary protection and radiation flame detectors as supplements. Figure 6, to be

discussed later as an example of fire-extinguishment provisions, shows the location of a smoke-

detection station in the ventilating-air return plenum in a rack. Similar installations are

planned for the protection of the central core and other inhabited volumes of the Freedom

complex.

A conceptual design of a proposed Freedom smoke detector is shown in figure 7. The

smoke detectors use the principle of photoelectric light scattering, with dual beams to respond to

both light scattering (indirect beam) and light obscuration (direct beam). The two beam sensors

complement one another for detection and reference. Proposed detection-alarm levels for

Freedom are based on light attenuation equivalent to a 5.3x101° particle/m 3 smoke



concentrationanda 1.6 percent/m optical smoke obscuration. These criteria differ from those of

the Shuttle, which are based on particle mass concentration (2 mg/m 3, as noted previously).

The comparative sensitivities of the present and proposed alarm levels depend on assumptions of

typical particle mass and size, factors that have been discussed in the literature (refs. 32 and 33).

The selection of photoelectric smoke detector for the Freedom proposal, instead of the ionization

smoke detectors used currently in the Shuttle, is based in part on an earlier tradeoff study

(Opfell, unpublished report). A recent review notes that the advantages of photoelectric smoke

detectors are the insensitivity to particle size (possible better response to smoldering), insensiti-

vity to environmental changes, and simpler construction (ref. 33).

Supplementary flame detectors in Freedom will protect the module central cores and

other high-risk spaces, such as galleys. Figure 8 shows a conceptual design of a radiation

detector tuned to three bands in the ultraviolet, visible, and infrared wavelengths, selected to

combine high sensitivity to fire-constituent radiation with strong false-alarm rejection. The

sketch also shows an estimate of the line-of-sight coverage of the fixed-position detector. An

investigation of the application of fiber optics to extend the viewing field of flame detectors and

to improve the efficiency of detection with a limited number of sensors in spacecraft has been

reported (ref. 34).

Atmospheric sampling is another means of fire detection, not yet exploited in spacecraft.

Freedom will have provisions for continuous atmospheric monitoring incorporated in its

environmental control and life support system (ECLSS). Continuous measurement of carbon

monoxide trace constituents in the ECLSS monitoring can offer a sensitive means for detecting

not only incipient fires but also emissions from nonflaming pyrolysis and smoldering (ref. 33).

Problems.--Fire "signatures" in low gravity often differ from those monitored in normal

gravity. Initial research on stabilized microgravity gaseous diffusion flames show them to be

sootier yet cooler than their normal-gravity counterparts (ref. 12). Otherwise, there are no

quantitative data on the smoke characteristics of mean particle size, size distribution, and

particle density of microgravity flames. A reasonable assumption is that microgravity fires gen-

erate smoke particles larger than those of normal-gravity fires because of particle agglomeration

due to the absence of convective stirring. Thus, smoke detectors that reject larger particles as

'_false alarms" may be insensitive in low gravity.

Radiative emissions from low-gravity flames are also different from those of normal

gravity. Recent studies of Bahadori, et al. (ref. 12), investigating the radiation from micro-

gravity gaseous diffusion flames, showed that the total radiant energy is significantly higher in

microgravity compared to normal gravity. On the other hand, studies of flames spreading across

liquid or solid surfaces in a quiescent microgravity atmosphere (refs. 13 and 14) showed that the

flames are dimmer and more blue than their normal-gravity counterparts (implying less radia-

tion). Furthermore, small-scale experiments demonstrated that microgravity flames are steady

and do not flicker (ref. 35), and thus conventional flame detectors with flicker circuits to filter

out steady ambient-light interference may also reject low-gravity fire signatures.

In addition to the changes in signature qualities, system designs and detector placement

in spacecraft must recognize that the heat and mass transport of gaseous and aerosol signatures

is slow due to the near absence of natural convection. For Freedom, decisions are yet to be

made on the optimum number and spacing of detectors, the system redundancy and multiple-

space zoning, the tradeoffs of automation versus manual responses, and the sensitivity levels for



warningand alarmfor balanceof safety against false-alarm rejection. System designs must also

meet the rigorous limitations on mass, volume, and power.

Fire Extinguishment

Current status.--One of the authors has recently reviewed the status of spacecraft fire

suppression and extinguishment (ref. 36). In the early U.S. human-crew spacecraft, the metering

water dispenser was designed as an alternative fire extinguisher, although it is questionable

whether this method could control any hazard beyond an incipient fire. In later missions,

aircraft-type, aqueous-gel foam and halogenated hydrocarbon fire extinguishers were installed in

the spacecraft (refs. 5 and 37).

At present, the Shuttle is equipped with three remotely actuated, fixed fire extinguishers

and additional portable fire extinguishers, all charged with Halon 1301 (bromotrifluoromethane).

The fixed extinguishers are mounted in the three electronic bays, and they are sized to discharge

sufficient agent to achieve a local concentration of 6 to 7 percent in approximately 1 sec. An

extinguisher has been discharged in space for demonstration but never for fire fighting. Shuttle

mission rules call for an immediate termination of the mission and return to Earth following the

discharge of a fire extinguisher.

Future trends.--Halon 1301 is among the halogenated compounds to be banned by

international protocol in the coming decade, and eventually it may be unavailable for spacecraft

usage. The proposed alternative is carbon dioxide as the agent for both fixed and portable fire

extinguishers. A conceptual schematic of the CO 2 system for Freedom is shown in figure 9. A
central supply, consisting of two redundant tanks in each U.S. module, is connected to a com-

mon manifold for each bank of racks. Within a typical rack, there will be a dry perforated pipe

as a distributor for flooding suppression (fig. 6). The CO 2 release valves are remotely operated

with manual overrides. Note that the fire detection and suppression panel on the front of the

rack has a port for insertion of the nozzle of a portable fire extinguishment, if necessary.

Carbon dioxide as an extinguishing agent has recognized problems of inefficiency and

toxicity in excessive concentrations (ref. 38). The selection of carbon dioxide as the agent for

Freedom was based on a design tradeoff study (Opfell, unpublished). Subsequent independent

system-analyses studies (refs. 39 and 40) have also given carbon dioxide the highest score among

competing agents in response to typical spacecraft fire scenarios, although the superior ranking

of carbon dioxide is based on subjective, marginal criteria. For the inhabited hyperbaric cham-

ber in Freedom, a space reserved for medical treatments and decompression recovery after extra-

vehicular activities, carbon dioxide is the proposed primary fire-extinguishing agent, but nitrogen

flooding is being considered for supplementary, emergency extinguishment.

Freedom also has the capability of automatic venting of its atmosphere to the vacuum of

space for fire control. Attempts to extinguish fires by withdrawing the spacecraft atmosphere

cause internal flows and forced convection, which may temporarily intensify a fire (ref. 15). The

residual total pressure sufficient for extinguishment, whether in normal or in low gravity, is not

known. Available atmospheric-gas stores on Freedom are limited to slightly more than the

quantity needed to support one complete venting and subsequent resupply. Obviously, venting

may be considered as an alternative only as a last resort for an otherwise uncontrollable fire,
after crew evacuation of a module.



Problems.--Reuther (ref. 40) suggested that there may be some chemical and physical

differences in the reactions of extinguishing agents between normal- and low-gravity environ-
ments. A greater concern, however, is in the effectiveness of the physical dispersion and removal

of extinguishing agents in low-gravity fires. In some of the Skylab microgravity combustion

tests, Kimzey (ref. 15) directed water sprays at the burning fuel samples. The water spray broke

up into discrete droplets, and they scattered some of the burning material before extinguishing
the flame. These early results indicate how difficult it may be to control and distribute liquid

and solid sprays in the microgravity environment. After extinguishment, the excess, unreacted

liquid and solid agents can persist as polluting aerosols in the spacecraft atmosphere. Because of

these formidable challenges of effective dispersion and subsequent cleanup of the spacecraft

atmosphere and surfaces, only gaseous agents are serious contenders for use in spacecraft.

For the permanent missions of Freedom, there will be no option of the return of a

module to Earth for conventional cleanup. Fire safety in Freedom must involve the complete

cycle from detection to repair, all conducted using resources available in the station. Of parti-

cular concern are the subtle, long-term toxic and corrosive effects from the fire and extinguish-

ment residues. This may be another strong reason to eliminate Halon 1301 in the near future,
because its extinguishment action generates at least small quantities of HF and HBr. The

closed-cycle atmospheric revitalization subsystem is an important component of the proposed

Freedom environmental-control system. The subsystem is to have a trace contaminant control

with an adsorbent bed to remove aerosols and a high-temperature catalytic oxidizer to convert
carbon monoxide and other gaseous combustion products into carbon dioxide and water for

subsequent removal and recycling (ref. 41). The trace contaminant control subsystem cannot be

sized to handle the excess effluents from an established fire. A promising approach to emergency

atmospheric control is through an auxiliary, high-response contaminant removal and recycling
unit feasible for space operation. Conceptual designs of such a system has been described

recently, with analyses of the response and cleanup times for a small and a large fire scenario

(ref. 42).

Fire-Response Management

The total program of fire protection must also consider fire-control procedures that allow

the automatic response to an alarm to be overridden manually, permitting this decision to be

made by relatively untrained crew personnel. Figure 10, adapted from unpublished NASA

Marshall Space Flight Center and Boeing Defense and Space Group documents, illustrates the

schematic concept for responses to a fire alarm originating in an equipment rack. The data-

management system is programmed to assess the detector signal to distinguish false alarms (per-
haps through rate-of-change or verification programs) and then reset to normal conditions, if
warranted. The subsequent automatic response to a verified alarm is a shutdown of the rack

electrical power and ventilating-air flow, prior to carbon dioxide release. The crew may override

the automatic agent release, with decisions available to take minimal shutdown action, release
carbon dioxide manually, or other responses.

Fire hazards will also be present during the assembly period of Freedom, a process

occupying a span of the order of five years. After the first year and a half of assembly, one or
more of the pressurized modules will be in orbit and occupied periodically by a work crew. A

fire-supporting atmosphere may be present even when the station is not occupied. (In 1973-1974
(ref. 21), the Skylab space station atmosphere was evacuated between attended periods.) Thus,
an automated fire detection and suppression subsystem is essential for control of fire incidents

occurring between occupied assembly periods. A reduced total pressure but enriched oxygen
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atmosphere,proposed for the assembly stages to assist the frequent exits and entrances for

extravehicular activities, will increase the potential flammability of spacecraft materials. A

review of contingency scenarios for the assembly (McDonnell Douglas, unpublished) has made

recommendations for crew intervention, design, and process improvements to alleviate some of

these hazards. Key suggestions include portable toxic-gas monitoring equipment for the

assembly crew, manual depressurization and flow-shutoff valves outside of each module (but

inside Freedom), and remotely operated hatches to allow module or node isolation through

ground signals.

CONCLUDING REMARKS CONCERNING SPACECRAFT FIRE SAFETY

RESEARCH NEEDS

Fire is a major catastrophic threat to spacecraft, and the space transportation sector has

responded to date with specialized requirements based on limited experience and adaptations of
fire-safety techniques from other sectors, particularly aircraft. For future long-duration and

complex missions, fire-safety technology must be adapted to respond to the unique fire charac-

teristics in the low-gravity spacecraft environment. Planning for adequate levels of safety in

spacecraft requires not only an understanding of the low-gravity, fire-related behavior of materi-

als and fire-safety devices but also the relationship between normal-gravity and low-gravity
behavior.

There are several areas of investigation that need continued emphasis to apply microgra-

vity combustion knowledge to spacecraft fire safety. More research is required to understand the
atmospheric-dilution and oxygen partial-pressure dependence for ignition and subsequent flame

spreading over solid materials, particularly for flow-assisted (flame propagating downstream)

configurations, for which there are very few experimental data in microgravity. The extension of

these studies to the comparison of low-gravity flammability, in all flow configurations, to

normal-gravity flammability will allow the reinterpretation of normal-gravity material screening

tests. To date, very few low-gravity experiments have been conducted with the engineering

materials used in spacecraft. This is because most real engineering materials burn too slowly to

be tested in drop towers (2 to 5 sec maximum microgravity time) or aircraft (about 20 sec of

low gravity). Long-duration microgravity testing of these materials should be instituted,
including tests on representative material geometries to allow study of flame propagation to

adjacent surfaces. Smoldering combustion is also a serious concern for spacecraft, where foam

insulation and waste storage provide archetypal sites for initiation of non-flaming combustion.

Research results on microgravity smoldering are currently lacking because smolder propagation

is so slow (approximately 0.5 mm//sec) that experiments cannot be conducted using ground-

based low-gravity facilities.

Spacecraft fire detection is currently based on knowledge of the particulate and radiant

emissions from normal-gravity fires. The actual emission characteristics of microgravity fires

must be studied to allow more appropriate designs of spacecraft fire detectors. In addition, the

effectiveness of the extinguishing agents under consideration, and their delivery and cleanup,

must be studied in low gravity. This is particularly important for Freedom, where fire extin-

guishment systems may have to operate automatically in unoccupied modules.

In summary, progress in the understanding of the significant differences between low-
gravity and normal-gravity combustion now offers the opportunity to improve fire-safety tech-

niques through anticipation of and efficient responses to probable spacecraft fire situations. The

principal challenge will be in the applications of fundamental microgravity science, advanced

11



safetytechnology,and quantitativerisk assessmentsinto a practicalpolicyof fire safetyfor the
designsandoperationsof future spacecraft,particularly in the complex,permanentorbital
operationsof the SpaceStation Freedom.
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Figure 1 .--Representation of the U. S. spacecraft fire-safety strategy.
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